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Abstract 

Epitope prediction of immunogens using bioinformatic approaches is supposed to bring a revolution in vaccine 

development. Computer based prediction tools has reduced both the number of validation experiments and time for 

epitope prediction. A number of epitope prediction tools are now available on the web, and bioinformatics-based 

prediction of CTL epitopes has gained huge popularity in drug designing. For a vaccine to be successful against the viral 

infections, it needs to ideally stimulate humoral or cellular immune responses. The in silico search mainly focuses for 

individual immunogenic components that can target different arms of the immune system. Peptide based drug can be 

designed by targeting the protein, involved in stimulating the host cell immune system. Perspectives in this field are 

presented in the present review. 
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Introduction 

     Effective method for prevention of viral infections has 
been vaccination. Conventional methods to design vaccine 
candidate is a laborious process requiring time and 
economy. During the last three decades efforts to control 
of viral diseases through the development of large 
number of antiretroviral drugs, public awareness and 
other prevention programs across the globe has led to 
significant reduction in viral cases yet, constantly evolving 
and drug resistant mutations are posing a continuous 
challenge to the therapy. This beckons an urgent need for 
effective vaccines offering a stable solution to control and 
eradicate the disease. Epitope based vaccine designing is 
more promising as the conventional approach lies on the 
responses induced by the natural immunogen which are 
not optimal. Epitope based drug designing relies not only 
on understanding the mechanisms of immunodominance 

but simultaneously analyzes multiple genomes to select 
the most appropriate epitope. 
 

Challenges in Conventional Methods of Vaccine 
Development 

     Development of vaccines or therapeutic measures often 
requires prior understanding of the immunological 
aspects during the natural course of an infection. 
Conventional vaccines prepared by either attenuated or 
inactivated whole pathogen has a number of limitations 
as genetic variations in these pathogens all over the globe 
may results in reduced efficiency of these vaccines in 
different parts of the world. Many vaccine trials are 
currently being conducted worldwide, but they fail to 
reach in phase III. These facts indicate clearly that there is 
a big gap between the early phase clinical trials (phase I 
and II) and efficacy trial (phase III) and the need for 
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further research to gain more knowledge on minimal 
components which determine the protective nature of the 
vaccine candidates against virus is desired [1]. Genetic 
variation in envelope proteins is one of the main hurdles 
in designing a vaccine [2]. Experimental assays for 
identification of conserved regions which maintain their 
structure and function of glycoprotein is a tedious 
process. Besides this the pathogens utilized during 
vaccination may revert to its pathogenic form and cause 
infection [3]. 
 

Vaccine Designing through Immunoinformatics 

     Immunoinformatics, an emerging field of the present 
era has addressed the complex biological problem of 
decrypting the immune response for vaccine designing 
[4]. An ideal vaccine which initiates humoral or cell 
mediated immune response is essential to completely 
eradicate the chance of re-infection. The Cytotoxic T 
lymphocytes (CTL) and Helper T lymphocytes (HTL) 
recognizes the foreign antigen as peptides that are 
presented with Major Histocompatibility Complex (MHC) 
and is expressed on the surface of all nucleated cells. T 
cell epitope prediction tools assist in identifying allele-
specific peptides, thus reducing the number of potential 
peptides to be considered as vaccine candidates. A 
rationally designed epitope based vaccine lies in 
understanding of antigen recognition by both T and B 
lymphocytes [5,6]. Conserved regions which maintain its 
structure and function of envelope glycoprotein are 
searched. The surface of the mature virus which has a 
large number of envelope proteins can be one of the 
initiating points for the systematic search of cavities in 
order to encounter those compounds which are able to 
interfere with the protein rearrangements. Besides this 
the protein responsible for participation in cell 
recognition, cell entrance are also targeted. In silico 
epitope predictions tools have proved advantageous in 
determining the potential candidates reducing the 
number of validation experiments and time [7,8]. 
Presently, huge numbers of computational tools are 
available to predict peptides (T and B cell) with necessary 
properties [8]. Algorithms based on binding motifs, 
Position Specific Scoring Matrices (PSSM), Artificial 
Neural Network (ANN) and Support Vector Machine 
(SVM) are often used to predict potential MHC binders. 
 

Bioinformatic Tools for T cell Epitope 
Prediction 

     Cytotoxic and helper T-cell epitopes are MHC bound  

sequences and attach in linear form. Epitopes are linked 
to MHC class I and MHC class II through their side chain 
interactions. Based on this, various tools predicting MHC 
class I binding Cytotoxic T-cell epitopes are designed like 
ProPred1, NetCTLpan, nHLAPed, RANKPEP, CTLPred, 
NetTepi. Tools for Helper T-cell recognizing epitopes 
bound to MHC class II are Propred, EpiDOCK, EpiTOP, 
MHC2Pred, HLA-DR4Pred [9]. MHC-II binding epitopes 
have proven less accurate compared to MHC-I [10]. 
 

Bioinformatic Tools for B Cell Epitope 
Prediction 

     Identification of B-cell epitopes (antigenic regions that 
stimulate B cell response) is a prominently forward step 
to propose a peptide vaccine. B-cell epitopes can be both 
of continuous or discontinuous type. Continuous B-cell 
epitope prediction is mainly based on the amino acid 
properties such as hydrophilicity, charge, exposed surface 
area and secondary structure. Discontinuous B cell 
epitope prediction requires 3D structure of the antigen 
[11-14]. 
 
     Various tools have been developed using different 
algorithms for B-cell epitope prediction. ABCpred, 
bepiPred, LBtope, APCpred tools are used to predict 
continuous B cell epitopes. Disco Tope 2.0 server, BEPro 
(PEPITO), SEPPA helps in prediction of discontinuous 
epitopes. Epitopia, ElliPro, PepSurf servers help in 
predicting both continuous and discontinuous epitopes. 
For continuous epitope driven vaccine design tools like 
ABCpred, bepiPred, LBtope and APCpred are available. 
 

Physicochemical Characterization of Epitopes 

     ProtParam and SOPMA (self optimized prediction 
method with alignment) of Expasy server can be used for 
predicting epitope’s physiological and chemical 
characteristics. ProtParam tool show the isoelectric point 
(pI), molecular weight, amino acid composition, grand 
average hydropathicity (GRAVY), estimated half-life, 
extinction coefficient, instability index and aliphatic index 
of predicted protein sequence [3,15-17]. Grand average 
hydropathicity (GRAVY) value of protein sequence shows 
it’s hydrophilic and hydrophobic nature i.e, higher the 
negative value higher will be its hydrophilicity.  
 
 
     Computational approaches for the prediction of highly 
immunogenic epitope has been employed for a number of 
viruses as listed in Table 1.  
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S. No. Virus Targeted Protein Antigens References 

1. 
Avian leukosis 

virus subgroup J 
Surface glycoprotein Gp85 Wang et al. (2017) [18] 

2. Rabies virus 
Glycoprotein with 

molecular adjuvant used 
C3d-P28. 

G5 
Galvez-Romero et al. (2018) 

[19] 

3. Hantavirus Surface glycoprotein pVAX-LAMP/Gc Jiang et al. (2017) [20] 

4. 
Human immunodeficieny 

virus 
Envelope glycoprotein Gp120 Thomas et al. (2014) [21] 

5. 
Aleutian mink disease 

virus 
Capsid protein VP2 Lu et al. (2017) [22] 

6. 
Avian leukosis 

Virus 
Structural protein P27 Khairy et al. (2017) [23] 

7. Influenza A and B virus. Surface glycoprotein Haemagglutinin Ren H and Zhou P. (2016) [24] 

8. Coronavirus 
Spike protein and 

membrane protein 
S and M protein Wang et al. (2008) [25] 

9. 
Influenza A virus 

subtype H9N2 
Matrix protein and 

surface glycoprotein 
M2e-HA2 Golchin et al. (2017) [26] 

10. Zika virus Envelop protein 5IRE Dey et al. (2017) [27] 

11. 
Varicella-zoster 

Virus 
Envelop glycoprotein gE protein Zhu et al. (2016) [28] 

12. 

Infectious brusal disease 
virus (IBDV) and 

Newcastle disease virus 
(NDV) 

Capsid protein and 
integral membrane 

protein (45) 

VP2 protein and HN 
protein 

Liu et al. (2015) [29] 

13. Rift valley fever virus 
Nucleocapsid and 

Glycoprotein 
N and G protein 

Adhikari and Rahman (2017) 
[30] 

14. Human bocavirus 1 Capsid protein Vp2 Kalyanaraman N (2018) [31] 
15. Ebola virus Coat proteins GP2 and VP24 Srivastava et al. (2016) [32] 

16. Zika virus 
Structural and non 
structural protein. 

Capsid 1 protein, 
membrane protein, E 

protein, NS1, NS2A, NS2B, 
NS3, NS4A, NS4B, NS5 

Dikhit et al. (2016) [33] 

17. 
Influenza A virus(H1 

subtype) 
Surface glycoprotein HA Guo et al. (2015) [34] 

18. Chikungunya virus 
Non structural 

polyprotein 
nsPP Pratheek et al. (2015) [35] 

Table 1: Reports on epitope based peptide vaccine design. 
 

Conclusion 

     Epitope driven vaccine designing has come as an 
attractive concept in both clinical and biomedical 
research and holds huge potential to replace the 
attenuated pathogen based vaccination. Improvements in 
in silico analysis and experimental evaluation will be 
critical in finally making it a success.  
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