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Abstract 

Nanotechnology in the field of vaccines delivery encompass various nanocarriers that have variety of compositions, sizes, 

and surface properties. These vaccines loaded or decorated on to the surface of nanocarriers help to induce both humoral 

and cell-mediated immune responses. This review discussed recent advances in nanocarrier-based vaccine delivery 

systems including polymeric nanoparticles, liposomes, micelles, ISCOMs and virus-like particles (VLPs) to augment 

immunity against various diseases. 
 

Keywords: Infectious Diseases; Vaccines 

 
 
 

Introduction 

     Vaccination is one of the most effective public health 
interventions that had a key impact on the management 
of infectious diseases [1,2]. It is a preparation of small 
amount of a biological agent that resembles a 
microorganism. Most of the vaccines have been developed 
using live attenuated organisms, killed whole organisms 
or inactivated toxins (toxoids). Upon administration, it 
helps to develop immunity to a particular disease by 
stimulates the immune system of our body to recognize 
the agent as foreign and ultimately destroy it and 
remember it. It will be in memory in order to easily 
recognize further and able to fight against any of these 
microorganisms that it later encounters [3,4]. Conversely, 
there are many infectious diseases for which the 
development of an effective vaccine has been restricted. 
In many cases the failure to devise vaccines is a result of 
the failure of vaccine candidates to evoke appropriate 
immune responses [5,6]. 

     As a consequence, interest has been directed toward 
the utility of nanotechnology delivery systems for 
delivery of vaccines [7,8]. In perticular, nanoparticles 
(NPs) and microparticles have been as an important 
strategy to deliver vaccines, as well as biomacromolecules 
such as proteins or DNA [9-11]. The vaccine antigen is 
either encapsulated within or decorated on to the surface 
of the NPs. On encapsulation of the antigen the NPs 
protects the vaccines from rapid degradation upon 
injection thereby induce a sustained immune response. By 
conjugation of antigens onto NPs be able to allow 
presentation of the antigen to the immune systems in 
much the same way that it would be presented by the 
pathogen, thereby provoking a similar response [4,5,11]. 
Furthermore, NPs prepared from various composites 
facilitate not only site directed delivery of immunogen but 
also the sustained release of antigens to maximize 
exposure to the immune system. In recent years, many 
researchers have attempted to design the NPs to deliver 
vaccines to evoke appropriate immune responses. In 
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recent years the development of various novel vaccine 
delivery systems using these nanotechnology will 
certainly be effective on providing potent antigen-specific 
humoral and cellular immune responses [3,11-13]. 
Moreover, recently nanotechnologies have been afforded 
various novel engineered vaccines against a range of 
infectious diseases. 
 

Limitation Associated with Vaccine Delivery  

     A major drawbacks of using live vaccines comprise a 
serious risk of relapsing back to their virulent form and 
further its intrinsic instability making difficult to deliver. 
In addition, killed or inactivated whole organism vaccines 
and toxoid vaccines most of the time induces a weaker 
immune response and usually necessitate several doses 
[1,14-19]. To this end, adjuvants have been used in a view 
to protect antigens from degradation however, its 
application usually depends on its nature [3,4,12]. For 
example some adjuvants are aluminium based but these 
can induce local reactions and may fail to generate strong 
cell-mediated immunity. Also researches confirmed that 
model protein antigens are actually destabilized by 
traditional aluminum salt adjuvants. Vaccines based on 
recombinant DNA and proteins were developed that 
afford more safety than traditional vaccines because these 
do not contain the whole pathogen in its native live or 
attenuated form for eliciting its associated disease, 
however, its application mostly associated with less 
immunogenic response. Moreover, vaccines meant for a 
lot of infectious diseases are still not developed or 
unavailable and their effectiveness is inadequate by their 
poor ability to cross biologic barriers to reach the specific 
sites [3,4,12]. To solve the above explained limitations, 
there is an urgent need for the development of a delivery 
systems for the next generation of vaccines. 
 

Nanotechnology in Vaccine Delivery 

     To overcome the intricacy associated with the 
conventional vaccine delivery, the progress of 
nanotechnology offers an effective approach which could 
provide significant benefits to immunization. In this 
regard, application of nanotechnology for vaccine delivery 
has gained a lot of attention [11,13]. In nanotechnology 
based vaccine delivery system, the nanocarriers are either 
encapsulating the antigen within or decorated it on to the 
surface. On encapsulation of the antigen the NPs protects 
the vaccines from rapid degradation upon injection 
thereby induce a sustained prolonged immune response. 
By conjugation of antigens onto the surface of NPs, permit 
targeted presentation of the antigen to the immune 
systems in much the same way that it would be presented 

by the pathogen. Currently, the introduction of 
nanotechnology for vaccine delivery and targeting is 
likely one of the most exciting and clinically important 
applications for eliciting immunity. The advent of 
nanotechnology coupled with a better understanding of 
various issues involved in vaccine delivery afforded 
development of various novel delivery systems against 
various fatal diseases. Beside better delivery and 
protection to encapsulated antigens at the same time it 
facilitates better cellular uptake owing to its nanoscale in 
size [9,13]. For example, antigen delivered through 
polymeric NPs are reported to taken up by M cells very 
effectively in the nasal-associated lymphoid tissue (NALT) 
when administered nasally, and it serves as a potent 
vehicle for mucosal immunization [20]. In comparison to 
encapsulated antigen the surface adsorbed antigen offers 
improved stability and immunity [4,10]. In this regards, 
nanotechnology offers various type of nanoscale delivery 
systems such as liposome, solid lipid nanoparticles, 
polymeric nanoparticles, functionalized nanoparticles, 
dendrimers, metallic nanoparticles, etc. Such competent 
nanoparticulate delivery systems are so engineered with 
the hope that they can act as likely candidates to interact 
with biological barriers and transport the bioactive 
molecule without altering its antigenicity. 
 
     Currently, nanotechnology offers various vaccine 
delivery systems that have been employed for evoking 
immune responses includes polymeric nanoparticles, 
liposomes, micelles, ISCOMs. and Virus-like particles 
(VLPs) (Figure 1). The commonly used delivery system is 
the NPs mostly prepared from various biodegradable 
polymers. It is mostly prepared from a range of polymer 
including poly (lactic-coglycolic acid) (PLGA) or 
poly(lactic acid) (PLA) [11-13]. Moreover, its sustained 
release kinetics of antigen can be controlled by 
modulating the matrix components with various 
copolymer. Further, Liposomes are known to be an 
professional vehicle for vaccine delivery. It has a 
microscopic structure containing an aqueous core 
surrounded by phospholipid bilayer capable of 
encapsulating any protein or biomolecule [21]. Micelles 
are prepared when amphiphilic molecules spontaneously 
associate in aqueous medium to form core-shell 
structures or vesicles in which the hydrophobic core is 
surrounded by a shell of hydrophilic polymers [22]. It is 
reported to demonstrate increased vascular permeability 
thus these can be used as proficient delivery for antigen. 
Colloidal saponin containing micelles (~ 40-nm cage-like 
particle) can be used as self-adjuvanting vaccine delivery 
systems and are collectively known as ISCOMs [23]. 
protein antigens (typically hydrophobic membrane 
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proteins) can be trap in the matrix of ISCOM through 
apolar interactions. It is bodily negatively charged and has 
the tendency to interact with positively charged antigens 
through electrostatic interactions. ISCOMs have been 
shown to be highly immunogenic not only when injected 
but also when delivered through the oral rout [23]. VLPs 
prepared from non-infective viruses and these are formed 
of self-assembling nanoparticles (20–60 nm in diameter). 
VLPs has several epitopes on their surface and be similar 
to native virions. Its structure is capable of inducing 
stronger immune responses. They also can express one or 
several viral structural proteins in a recombinant 
heterologous system. It can induce protection not only 
against the virus of origin but also against heterologous 
antigens [24]. 
 

Conclusion 

     The nanotechnology based vaccine delivery systems 
have been established as an efficient antigen delivery 
systems to augment immunity against various diseases 
due to their small size, large surface area to mass ratio, 
stability, aptitude for surface modification, and their 
control rate of degradation to allow sustained release of 
the antigens. However, the future of nanotechnology 
based vaccine delivery systems will be highly dependent 
on the development of safe, non-toxic and non-
immunogenic nanocarriers. There are still safety concerns 
associated with the introduction of such particles to the 
human body.  
 

 

 

Figure 1: Schematic illustration of representative nanotechnology-based platforms that have been used for vaccine 
delivery. 
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