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Abstract

On December 31, 2019, a novel coronavirus outbreak caused cough, fever, and dyspnea with ARDS in residents of Wuhan, 
Hubei Province, China. Later, it spread throughout the world, affecting not only livelihood but also the economy and social 
fabric. Scientists from different continents were involved in the discovery of its vaccine, and many vaccines were produced. 
As a result, the goal of this work is to examine the various potential vaccines for SARS-COV-2 virus and COVID-19 associated 
disease, as well as their immunological aspects. a new coronavirus that was later dubbed severe acute respiratory syndrome 
coronavirus-2. By its nature, this virus is a positive-sense single-stranded RNA virus that contains a spiral or circular genome 
inside of its crown-like structure. Spike proteins, which are structural proteins found in viruses, play an important role in 
virus entry into the host cell. Following entry, the virus replicated in the cell, causing the immune system to become overly 
responsive, potentially leading to organ and system failure. Although the first coronavirus outbreak occurred two decades 
ago, no effective vaccine was developed. However, following the virus’s outbreak, a large number of scientists, clinicians, and 
researchers were mobilized to develop vaccines in an unprecedented time frame. Owing to their urgent need, some vaccines 
are licensed with minor side effects. Therefore, vaccine safety and efficacy should be assured prior to approval for emergency 
use. Since vaccine development and sustainability have faced virus mutation, regular virus genome sequencing and analysis 
should be recommended to combat the upcoming viral infection. 
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Ankara.

Introduction

At the end of December 2019, a novel coronavirus was 
recognized as the reason for the presentation of patients 
with cough, fever, and dyspnea with acute respiratory 
distress syndrome (ARDS) of unknown etiology in Wuhan 
city, from Huanan Seafood Wholesale Market, in the Hubei 
Province of China [1], the etiological agent of pneumonia 
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was officially announced as a novel coronavirus [2,3] and 
abbreviated as 2019-nCoV by the WHO [4]. This pathogen 
was later renamed as severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2) by the International Committee 
of Taxonomy of Viruses (ICTV), and the disease was named 
coronavirus disease 2019 (COVID-19) by the WHO [5]. The 
Chinese Center for Disease Control and Prevention quickly 
identified the pathogen as a new type of coronavirus and 
deposited the first viral sequence into GenBank (LR757995, 
LR757998) on January 30, 2021 [6].

The virus belongs to the Nidovirales order, which 
consists of three families, namely, Roniviridae, Arteriviridae, 
and Coronaviridae [7,8]. At the same time, the Coronaviridae 
family is divided into two groups, which include the Torovirinae 
and the Coronavirinae. Further, the Coronavirinae subfamily 
is classified into alpha-, beta-, gamma-, and delta-COVs [7]. 
Coronaviruses are large, enveloped, single-stranded RNA 
viruses found in humans and other mammals, such as dogs, 
cats, chickens, cattle, pigs, and birds. Coronaviruses cause 
respiratory, gastrointestinal, and neurological diseases. 
The coronavirus is a zoonotic virus that causes respiratory 
infections. It was identified as a coronavirus in 1965 due to 
its crown-like appearance under microscopy [9].

The types of coronavirus known to date are SARS-CoV, 
which causes severe acute respiratory syndrome (SARS) 
that originated in China between 2002 and 2004; MERS-CoV, 
which causes Middle East respiratory syndrome (MERS) that 
originated in the Arabian Peninsula in 2012; and SARS-CoV-2, 
which causes the disease known as coronavirus disease 
2019 (COVID-19). It has a diameter of 60 nm to 140 nm 
and distinctive spikes that give the virions the appearance 
of a solar corona [10]. Through genetic recombination and 
variation, coronaviruses can adapt to and infect new hosts. 
Bats are thought to be a natural reservoir for SARS-CoV-2, 
but it has been suggested that humans became infected with 
SARS-CoV-2 via an intermediate host, such as the pangolin 
[11,12].

The clinical manifestations of COVID-19 can vary from 
asymptomatic and mild flu-like symptoms to ARDS and 
death. Long-term pulmonary, cardiological, and neurological 
complications have also been reported in COVID-19 cases 
[13]. Compared with SARSCoV and MERS-CoV, SARS-CoV-2 
is highly contagious [14]. It was realized that vaccines 
could play an essential role in increasing the immunity of 
the population, preventing severe conditions caused by 
COVID-19 infection, reducing the burden on healthcare 
systems, and minimizing economic losses [15]. Traditionally, 
vaccines require 10–15 years of research, development, and 
testing before their clinical use can begin [16]. However, in 
early 2020, scientists embarked on attempts to produce safe 
and effective SARS-CoV-2 vaccines at record speed [17].

More than 250 vaccine projects were initiated 
worldwide in 2020, and according to a recent WHO report, 
97 vaccines are in clinical trials from phases 1 to 3, and 
182 are in their preclinical development stages. Different 
technologies have been applied in vaccine preparation, some 
conventional and some newly developed and applied for 
the first time in humans [18,19]. The vaccines can initiate 
an adaptive immune response, particularly B- and T-cell 
responses, by introducing antigens. Although there are a lot 
of vaccine candidates in different phases of clinical trials, 
only a few have been approved for use. The safety, efficacy, 
and immunogenicity of these vaccines vary. Some licensed 
vaccines require optimal storage temperatures, while others 
require ultra-cold storage temperatures, posing a problem 
for vaccine usage in Poor Countries. In terms of safety, some 
vaccines have minor side effects, while the safety of others 
is unknown. Serious public health crisis, and high mortality 
of COVID-19, an effective, safe, and stable vaccine is urgently 
needed to control this pandemic. Therefore, the aims of the 
current work are:
•	 To review severe acute respiratory syndrome 

coronavirus-2 (SARS-CoV-2).
•	 To update the recent development of the COVID-19 

vaccine and its immunogenicity.
•	 To overview the progress of universal COVID 19 vaccine 

development.

Literature Review

Virology

SARS-CoV-2 is an enveloped, positive-sense single-
stranded RNA (ssRNA) virus that can be categorized in the 
family Coronaviridae and order Nidovirales. The family 
consists of two subfamilies, Coronavirinae and Torovirinae, 
and members of the subfamily Coronavirinae are subdivided 
into four genera: (a) Alpha coronavirus contains the human 
coronaviruses HCoV-229E and HCoV-NL63; (b) Beta 
coronavirus includes HCoV-OC43, Severe Acute Respiratory 
Syndrome human coronavirus (SARS-HCoV), HCoV-HKU1, 
and Middle Eastern respiratory syndrome coronavirus 
(MERS-CoV); (c) Gamma coronavirus includes viruses of 
whales and birds; (d) Delta coronavirus includes viruses 
isolated from pigs and birds [20] SARS-CoV-2 is a member 
of the beta-coronavirus family, which also includes two other 
highly pathogenic viruses, SARS-CoV and MERS-CoV [21].

Genomic Features of SARS-Cov-2

Coronaviruses form enveloping, spherical particles, and 
they have a cloverleaf structure. Glycoproteins and proteins 
on the virus’s surface have created a crown-like structure on 
it. These viruses are called coronaviruses because of their 
crown structure. A nucleo-capsid is made of capsid-coated 
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proteins that contain the virus’s genetic material Figure 1 
[22]. The genome of SARS-CoV-2 is around 30 kb and starts 
with a 5’ cap structure and ends with a 3’ poly-A tail [23].

The virus genome consists of two terminal untranslated 
regions (5’ and 3’ UTRs) and twelve putative functional 
open reading frames (ORFs). The 5′-terminus of the CoV 
genome contains two overlapping ORFs, ORF 1a and ORF 
1b, that span over two-thirds of the genome and encode the 

large replicase polyproteins (pp1a and pp1ab), which are 
post-translationally cleaved into 16 putative non-structural 
proteins (nsps) involving proteases, RNA polymerase, 
helicase, and other proteins involved in the transcription of 
the viral genome, replication of SARS-CoV, and subgenomic 
mRNA synthesis [24-26]. The SARS-CoV-2 virus is composed 
of four structural proteins, including S protein, envelope (E), 
membrane (M), and nucleocapsid (N), which are encoded by 
the 3′-terminus of the CoV genome [23,27].

Figure 1: Structure of SARS-CoV-2 showing key proteins and structure of nucleocapsid protein.

S-protein is responsible for the initial attachment of 
the virus to the host cell surface. It has two subunits, S1 
(specific receptor binding domain known as RBD) and S2 
(CoV S2 glycoprotein). S protein, through its specific RBD, 
binds to its receptor on the host cell [28]. M protein has three 
transmembrane domains and plays a vital role in introducing 
the virus into the body and forming envelopes, whereas 
E protein is responsible for proliferation, germination, 
envelope formation, assembly, and release of viral particles 
from the cell. It is also involved in viral pathogenesis [29]. 
N protein has two domains, both of which can attach to 
the viral RNA in order to assist replication, and it also acts 
as a repressor of the RNAi system of the host cell, hence 
supporting viral replication [30].

Potential Sars/Cov-2 Vaccine Candidate

A vaccine is a biological product that produces an acquired 
active immunity against a specific microbial disease [31]. 
Vaccines are very vital and save the lives of millions of people 
every year. The primary function of vaccines is to train and 
prepare the immune system to identify and fight the target 
pathogen. Vaccines have common components like active 
ingredients of pathogen antigens that directly stimulate the 
immune system, adjuvants, antibiotics, stabilizers (sugar or 

gelatin), preservatives, and trace components. The research 
and development of COVID-19 vaccines is going very quickly, 
and the entire vaccine development process, including 
the required clinical trials, has been amazingly shortened 
to 15–18 months instead of 10–15 years. As a result, the 
simultaneous marketing of multiple vaccines began in early 
2021 [32,33].

Universal COVID-19 Vaccine and SARS-COV-2 
Variants

The SARS-CoV-2 which causes COVID-19 cases in 
Wuhan, China is designated as the “Wuhan reference strain”, 
while the SARS-CoV-2 strains with mutations are referred 
to as variants [34]. Currently, due to the nature of virus and 
mutation problems, several SARS-CoV-2 variants have been 
emerged. Commonly known that has emerged variants are 
mink Cluster 5, lineage B.1.525, lineage P.3, the UK variants 
(B.1.1.7, variant of concern [VOC] 202012/01, and VOC 
202102/02), Indian variant (B.1.617), Nigerian variant 
(B.1.1.207), South African variant (B.1.351), California 
variants (B.1.429 and B.1.427), Brazil variants (lineages 
P.1 and P.2), and le variant Breton. The transmissibility 
and lethality of the variants are higher than those of the 
Wuhan reference strain. Therefore, a universal vaccine for 
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the reference strain and all variants (present and future) is 
indispensable [35].

Most of currently available vaccines are based on spike 
protein. The Pfizer/BioNTech and Oxford-AstraZeneca 
vaccines provided protection against the UK variant of 
concern (B.1.1.7) [36]. However, whether the currently 
available spike (S) protein-based COVID-19 vaccines from 
Pfizer/BioNTech, Moderna, Oxford-AstraZeneca, and 
Johnson & Johnson have a protective effect against the Indian 
variant (B.1.617) is still uncertain. Even if these vaccines are 
effective against B.1.617, there might be still new emergence 
of SARS-CoV-2 variants, thus a universal vaccine for all 
variants of SARS-CoV-2 is urgently needed. If the current S 
protein-based vaccines are found to be ineffective against 
any of the variants, a universal COVID-19 vaccine would 
indeed be indispensable [37].

Universal COVID-19 Vaccine Targeting SARS-
Cov-2 Envelope Protein

Understanding of the origin, genomic features, and 
pathogenic mechanisms of SARS-CoV-2 is very subjective 
to design appropriate corresponding strategies for the 
development of universal COVID-19 vaccine. The SARS-CoV-2 
virus is composed of four structural proteins, including S 
protein, envelope (E), membrane (M), and nucleocapsid (N), 
which are encoded by the 3′-terminus of the CoV genome 
[23,38].

The coronavirus E protein is a small integral 75 amino 
acid membrane protein involved in crucial aspects of 
the viral lifecycle, including assembly, budding, envelope 
formation, replication and pathogenesis [29]. This protein 
is thus a potential target for the development of a universal 
COVID-19 vaccine, because of its highly conserved amino 

acid sequence. The variant mutations occur mainly in the 
spike protein, and conservation of E protein remained stable 
in most Variants of Concern. Therefore, a vaccine targeting 
the SARS-CoV-2 E protein would be effective against the 
SARS-CoV-2 Wuhan reference strain and all current and 
future SARS-CoV-2 variants. These facts suggest a strategy 
for developing a universal vaccine against SARS-CoV-2 that 
would be effective against all variants, current and future: a 
vaccine based on the E protein [37].

Diversity of COVID-19 Vaccine Technology Platforms
Notably, the technology platforms used on COVID-19 

vaccines were abundant, and each of the platforms has 
some advantages and disadvantages, as listed in Table 1. The 
most common technology platforms, in descending order of 
frequency, were protein subunit (PS), RNA, viral vector non-
replicating (VVNR), inactivated virus (IV), DNA, virus-like 
particle (VLP), viral vector replicating (VVR), VVR combined 
with antigen-presenting cells (APC), live attenuated virus 
(LAV), dendritic cell vaccine (DCV), and T cell-based vaccine 
(TCV) [6]. Among all vaccine types being evaluated in trials, 
types such as nucleic acid, viral vectors, viruses, and protein 
subunits Figure 3 are more frequently used [39].

In terms of vaccine research and development, vaccine 
types such as TCV, LAV, DCV, and VVR+APC were still in their 
early stages, with only a few products designed for each type; 
no product has been confirmed to have adequate safety to 
date. Despite the fact that no efficacy has been confirmed 
as of yet, VVR, VLP, and DNA have more products planned, 
and some of the involved products have already entered the 
efficacy confirmatory phase. It is gratifying that there were 
two RNA vaccines, two PS vaccines, four VVNR vaccines, and 
seven IV vaccines authorized for emergency use (Table 2) [6].

Figure 3: SARS-CoV-2 vaccine types.
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Formaldehyde inactivation, UV and gamma irradiation, 
or growing SARS-CoV-2 in cell culture, usually on Vero cells 
9 (monkey kidney cells) and growing in bioreactor tanks, 
followed by chemical inactivation of the virus [40,41], are 
all methods for producing inactivated vaccines. Dousing 
with a chemical called beta-propiolactone could disable 
the viruses by binding to their genes and thus preventing 
their replication; however, their proteins, including the 
spike (S) protein, remained intact [42]. The productivity of 
the virus in cell culture and the requirement for production 
facilities at biosafety level 3 are the common bottlenecks for 
vaccine production. These vaccines are usually administered 
intramuscularly and can contain alum or other adjuvants to 

boost the immune response against the inactivated vaccine 
[43].

Four inactivated vaccines have been given authorization 
for use. Inactivated vaccines contain a diverse set of native 
viral antigens [44]. Such multiple antigens can induce a TH2 
response and lung eosinophilia, which may be worse in aged 
hosts [45]. This broad-spectrum immune stimulation may 
result in a special condition in the post-vaccination period 
called the vaccine-related enhancement of disease (VRED) 
[46]. Therefore, TH1-skewing modified alum or other types 
of adjuvants such as CpG are recommended to be added to 
the vaccine as alternatives to avoid VRED [47].

Vaccine 
platforms Advantage Disadvantage

Inactivated Virus

Stable and safe Require multiple boosters
Can be used together with adjuvant to 

increase the immunogenicity
Low titre production

Immunocompromised individuals can also be 
vaccinated

RNA-based

Low cost and rapid manufacturing Show instability and thus low
Good safety profile immunogenicity

No risk of viral genome integration into host 
genome May be requiring multiple doses

Viral Vector

Highly specific for gene delivery in target 
cells Immunity against vector may reduce the efficacy

May induce robust immune response Probability of integration of viral genome into the host 
genome that may lead to tumorigenesis

Increases cellular immunity Induces low titre production

Protein Subunit
Good safety profile

Low immunogenicityImmunocompromised individuals can also be 
immunised

DNA-based

Stable Low titre production
Low cost manufacturing

May get integrated into host GenomeGood safety profile
Infectious viral particles are not involved

Virus-like 
particles

Can be used with adjuvant to increase the 
immunogenicity

May require multiple boosters
Low titre production

Live-attenuated 
Virus

High potency with low cost manufacturing Viral nucleotide substitution may occur leading to 
production of recombinant strain

Intrinsic ability to stimulate innate immune 
response Not suitable for Immunocompromised individuals.

Table 1: Advantage and Disadvantage of various vaccine platforms used for development of vaccine candidates against viral 
infections [48].
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Vaccine Sponsor Type Storage Dosage Efficacy
Gam-COVID-Vac 

Lyo Gamaleya Research Institute VVNR stable at 2–8°C 2 doses, 
0/21days 92%

BBIBP-CorV* Sinopharm IV stable at 2–8°C 2 doses, 
0/21days 78.10%

EpiVacCorona Federal Budgetary Research 
Institution PS Unclarified 2 doses, 0/21-

28day /

BNT162b2 Pfizer/BioNtech/ Fosun 
Pharma RNA Stable at −80 ~ −60°C; 2 ~ 

8°C for 1 month 2 doses, 0/21 95%

mRNA-1273 Moderna/NIAID RNA for 24 
hours

Stable at −50 ~ −15°C; 2 ~ 
8°C for 30 d; 8 ~ 25°C 2 doses, 0/28day 94%

AZD-1222 Oxford Universty/ AstraZen-
eca VVNR stable at 2–8°C 2 doses, 0/4-12 

w 70%

COVAXIN Bharat Biotech IV stable at 2–8°C 2 doses, 0/28d 81%
CoronaVac* Sinovac IV stable at 2–8°C 2 doses, 0/14d /

QAZCOVID-IN Unclarified IV Unclarified Unclarified /

CoviVac Russian Academy of Sci-
ences IV Unclarified Unclarified 51%

Unclarified* Sinopharm IV stable at 2–8°C 2 doses, 0/21d 72.80%
Ad5-nCoV* CanSino-BIO VVNR stable at 2–8°C 1 dose /

Ad26.COV2.S Janssen VVNR Stable at −20°C; 2 ~ 8°C 
for 3 months 1 dose /

ZF2001 Zhifei/Chinese Academy of 
Sciences PS stable at 2–8°C 3 doses, 

0/30/60d /

KCONVAC Beijing Minhai Biotechnol-
ogy Co IV Unclarified 2 doses, 0/28d /

Viral vector non-replicating (VVNR); Inactivated virus (IV); Protein subunit (PS)
Table 2: Overview of authorized COVID-19 vaccines worldwide [49].

Covaxin Vaccine (Cov; Bharat Biotech Vaccine, 
Bbv152)

It was manufactured by a collaboration of the Indian 
Bharat Biotechnology Company, the Indian Council of 
Medical Research, and the National Institute of Virology 
[44]. The COV has been granted permission in India for 
restricted use in emergency situations despite being in phase 
3 of clinical trials [50,51]. This vaccine is used in a two-dose 
regimen with the doses given 4 weeks apart, and its efficacy 
is reported to be 81% [52], although 82.8 to 91.9% of the 
vaccinated people generated antibodies (seroconverted) 
with robust immune responses [52]. It can be stored for one 
week at room temperature, which makes it suitable for usage 
in tropical and subtropical countries [50].

Sinopharm Vaccine (SV; BBIBP-Corv)

The Sinopharm vaccine is manufactured by a Chinese 
company, Sinopharm Group, and is marketed with the 

cooperation of the UAE. This vaccine used a HB02 strain 
rather than a WIV04 strain [53]. It is administered in a 
two-dose regimen, with the doses given 3 weeks apart by 
intramuscular injection. It showed an efficacy of 79.34% in 
China and 86% in the UAE, besides being 100% effective 
in preventing moderate and severe COVID-19 cases. The 
developers did not report any serious side effects during its 
phase III clinical trial or after its authorization for use [47].

Sinopharm-Wuhan Vaccine (SWV)

The Sinopharm-Wuhan vaccine was prepared by 
the Chinese Wuhan Institute of Biological Products. It is 
effective in preventing COVID-19 in 72.5% of vaccinees 
(https://www.reuters.com/article/us-health-coronavirus-
vaccine-sinopharm). It shows comparable side effects to the 
Sinopharm vaccine and is also in its Phase III clinical trial 
[54]. The Wuhan vaccine utilizes the WIV-04 strain, which 
was isolated and cultivated in a Vero cell line for propagation. 
Then, the supernatant of the infected cells was inactivated. 
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This vaccine is given in two doses, three to four weeks apart. 
A third dose is recommended for those individuals who show 
weak immune responses [54].

Coronavac Vaccine (CV; Formerly Picovac)

CoronaVac vaccine is manufactured by SinoVac Biotech, 
a private Beijing-based biopharmaceutical company, in 
collaboration with the Brazilian research center Butantan. It 
is a beta-propiolactone-inactivated, Vero cell line-propagated 
whole virus vaccine that originated from a patient-derived 
CN-2 SARS-CoV-2 virus strain. The vaccine is given in two 
doses (3 g per 0.5 mL dose by intramuscular injection) for 
individuals aged 18 years and older, with an interval of 14 to 
28 days between doses [27].

Moreover, it was reported that this vaccine generates 
a moderate immune response with lower antibody levels 
in comparison with levels in patients who have recovered 
from COVID-19 [55]. Therefore, this vaccine requires an 
adjuvant, such as alum, to boost the immune response, but 
this requirement in turn makes the vaccine unsuitable for 

respiratory administration. CoronaVac vaccine showed no 
serious side effects and can be stored at the temperature of 
(2–8 oC, making it suitable for worldwide distribution [54].

 Mrna Vaccines

mRNA vaccines are characterized by robust 
immunogenicity, intrinsic adjuvant properties, low 
production costs, favorable safety profiles, quick production, 
and special storage and delivery systems. This vaccine 
preparation has been investigated over the last 20 years for 
different viruses, such as rabies, influenza, and Zika [56]. 
The main advantage of this technology is that it allows the 
body’s cells to produce S proteins rather than injecting them 
as in vaccines. This reduces the time required for building 
the vaccine and hence requires less time compared to that 
required for classical vaccines [57]. The conventional mRNA 
vaccines utilize manufactured nucleoside-modified, single-
stranded messenger RNA (Figure 4) to deliver genetic 
instructions to human cells for building up the coronavirus 
protein known as the spike protein (S) [58].

Figure 4: Structure of Conventional mRNA Vaccine [59].

Some intrinsic features of mRNA molecules demand 
special strategies to guarantee the stability, efficacy, and 
safety of mRNA vaccines. First, mRNA is intrinsically unstable 
and prone to degradation due to the omnipresence of RNases 
in the serum and plasma [60]. Second, the cellular machinery 
recognizes exogenous RNA molecules as an immunological 
mimic of viral infection, which results in an immediate 
immune response [61]. Thus, it is a prerequisite for the 
design of mRNA vaccines to maximize the stability of mRNA 
and translation efficiency and avoid the innate immune 
response by host cells [62,63].

The design achieved by 5’-capping the mRNA vaccine, 
which is critical for protecting mRNA from exonuclease 
activity, facilitating pre-mRNA splicing, and serving as the 
binding site for eIF4F, the heterodimeric translation initiation 
complex) [64,65], Optimization of the 5’ and 3’ UTRs and the 
length of the polyadenylation tail are closely associated with 
translation efficiency [66]. modification of the nucleosides 

in mRNA molecules by incorporating pseudouridine into 
mRNA molecules in the place of uridine, in order to suppress 
the activation of TLR and avoid the degradation of RNA by 
RNase L [67,68].

The mRNA enters the human cells encapsulated by 
lipid nanoparticles (LNP) that prevent the cells of the body 
from degrading it and give stability to the mRNA, which is 
a fragile molecule. After mRNA has passed its instructions 
to the protein-making machinery in the cytoplasm of the 
body’s cells, enzymes called ribonucleases (RNases) degrade 
the mRNA [58]. Therefore, it is impossible for the mRNA to 
integrate with the DNA in the nucleus of the vaccinated cells, 
posing no risk of inducing genetic changes. After the S protein 
is produced by the cells of the body, the immune response is 
initiated with its two arms, i.e., humoral and T-cell-mediated 
immunity. The neutralizing antibodies can stop the spike in 
protein. The killer T cells (CD8+) in vaccinated individuals 
recognize and destroy any coronavirus-infected cells that 
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display spike protein fragments on their surfaces [69].

Moderna Vaccine (MV)

mRNA-1273 was developed by Moderna and consists of 
mRNA encoding the spike protein stabilized in the prefusion 
conformation, or SARS-CoV-2 S(2P), formulated in lipid 
nanoparticles (Corbett et al., 2020a) [70]. This vaccine has 
an advantage over the Pfizer vaccine in that it can be stored 
at temperatures equivalent to a standard freezer (-20 oC), 
making it easier to ship to remote and rural areas, and it 
has an efficacy of 94.1%. It requires two shots four weeks 

apart [71]. When mRNA-1273 was tested in nonhuman 
primates, the vaccine-induced neutralizing antibodies 
reached levels higher than human convalescent-phase 
serum (Figure 5). There was a dose-dependent increase in 
Th1-biased responses, with low or undetectable Th2 or CD8 
T-cell responses 4 weeks after the second dose. Vaccinated 
animals did not have evidence of viral replication or virus 
RNA identified in broncho-alveolar lavage fluid or nasal 
samples. There was also limited lung inflammation on day 
2 post-exposures to the SARS-CoV-2 virus in the vaccinated 
group [72].

Figure 5: The mechanisms of action of the mRNA-1273 vaccine. Following endocytosis, the mRNA is translated to SARS-CoV-2 
S protein, which is released and also undergoes the MHC class I processing for the antigenic presentation on the host cell 
surface. The exogenous protein undergoes endocytosis followed by processing by MHC class II [59].

Pfizer–Biontech Vaccine (PBV)

After the onset of the pandemic, Pfizer and German 
BioNTech collaborated and compared four mRNA-based 
vaccines to select a potential candidate against SARS-CoV-2 
infections. Based on the trial results, vaccine candidate 
options were narrowed down to two: BNT162b1, encoding a 
receptor-binding domain, trimerized by adding a T4 fibritin 
foldon domain, and BNT162b2, encoding a full-length S 
protein modified by two proline mutations [73]. The PBV is 
given in two doses, 3 weeks apart [74]. It is also recommended 
that vaccinated individuals receive a booster shot, or a third 
dose, within 12 months of being fully vaccinated and then 
annually thereafter. The vaccine is 95% effective in providing 
protection [74].

PBV offers strong protection against COVID-19 within 10 
to 14 days of the first dose, regardless of the recipient’s race, 

weight, or age [75]. It can produce strong antibody and T-cell 
immune responses. This vaccine does not cause any serious 
side effects but frequently causes short-lived symptoms 
such as pain at the site of injection, mild fever, fatigue, and 
muscle pain [76]. It is interesting to note that BTN162b 
vaccines are suggested to be shipped and stored at an ultra-
cold temperature of -80 C, which imposes difficulties on their 
usage in certain countries [77].

CVNCOV Vaccine of Curevac (CVV)

It is produced by Tübingen’s CureVac biotech firm 
in partnership with the Bayer Company and is currently 
in its combined phase 2b/3 clinical trial. This vaccine is 
considered a rival to the leading mRNA vaccines, PBT and MV 
[69]. Like the PBT and MV, the CVV utilizes a natural, non-
chemically modified, synthetic mRNA coding the prefusion-
stabilized full-length spike protein of SARS-CoV-2. The CVV 
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is administered intramuscularly in a two-dose regimen 
with an interval of four weeks. This vaccine requires lower 
doses (12mg) than the 30 mg for PBV and the 100 mg 
for MV (https://www.curevac.com/en/covid-19/). The 
manufacturers claimed that it showed an efficacy of 95%. 
The vaccine remains stable for at least three months when it 
is stored at 5 oC, as suggested by its manufacturer. Moreover, 
it can be stored at room temperature as a ready-to-use 
vaccine for up to 24 hours, which makes it suitable for usage 
in poorer countries [69].

Non-Replicating and Replicating Viral Vector-
Based Vaccines

These types of vaccines utilize replication-deficient or 
attenuated replication-competent (bioengineered) viral 
vectors [78,79]. It can effectively introduce genes encoding 
viral antigens into host cells. The infected cells produce 
and release immunogenic antigens after a certain period 
of vaccination [25]. Many viral vector platforms that have 
been tested in SARS-CoV and MERS-CoV are being explored 
in COVID-19 vaccines, including adenovirus (both human 
and non-human primates), measles virus, modified vaccinia 
virus Ankara (MVA), parainfluenza virus, rabies virus, and 
vesicular stomatitis virus (VSV) [80]. The most common 
replication-incompetent viral vectors currently in use are 
human Ad5 and Ad26 adenoviruses and a modified version 
of the chimpanzee adenovirus ChAdOx1. This vector carries 
and delivers a double-stranded DNA segment of the RNA of 
SARS-CoV-2 that codes the S-protein antigen of the virus [69].

After injection, genetic material escapes from the vectors 
and travels to the nucleus, where the DNA is stored but does 
not integrate with the body’s DNA [78,79]. Afterwards, it is 
transcribed into mRNA that leaves the nucleus to be read 
and “translated” into spike proteins; these proteins begin 
to be assembled on the surfaces of infected cells. Once the 
S proteins or their fragments are recognized by the immune 
system, it starts to send warning signals and generate specific 
neutralizing antibodies and activated T cells (CD4+ and 
CD8+), as well as memory cells of the B- and T-cell types. The 
protection generated from these vaccines ranges between 62 
and 90% (with an average of 70%) [54]. The vectors used 
with these vaccines have a tough protein coat that helps 
protect the genetic material inside them. For this reason, the 
vaccine does not have to stay frozen and can be stored for 
at least 6 months at refrigerator temperatures (2–8℃) [42].

Oxford–Astrazeneca Vaccine (OAV; AZD 1222; 
Vaxzevria)

AZD 1222 was developed by Oxford University and 
the Jenner Institute (AstraZeneca). It was one of the first 

to begin clinical trials and the only one using a debilitated 
chimpanzee adenovirus (ChAdOx1). The SARS-CoV-2 
spike protein is expressed by the AZD1222 vaccine [81].
The AZD1222 vaccine team published their phase I/II trial 
interim report in July 2020 and showed that AZD1222 can 
elicit S protein-specific antibodies and T-cell responses and 
induce neutralizing antibodies in all participants after the 
prime-boost regimen [81].

It has an acceptable safety profile and is efficacious in 
combating symptomatic COVID-19. In addition, this vaccine 
is effective against the new and more contagious U.K. SARS-
CoV-2 variant B.1.1.7 and partially (10% efficacy) against the 
South African B.1.351 variant [82]. The OAV was reported 
to have an efficacy ranging from 62 to 90%, according to 
the two-dosage protocol of SD/SD or LD/SD, respectively 
[81,83]. Furthermore, this vaccine can be kept at refrigerator 
temperatures (2–8 oC) for at least six months, which makes it 
easy to store, transport, and distribute globally [81,83]. The 
OAV triggers strong humoral and cellular immune responses. 
Again, this vaccine produces minor side effects, such as 
fatigue and headache [83].

Sputnik-V or Gam-COVID-Vac Vaccine

The SVV vaccine was developed by the Gamaleya 
Research Institute of Russia and named in memory of 
the Soviet-era satellite program. This vaccine utilizes a 
combination of two adenoviruses that are not recognized by 
the human immune system as foreign [84,85]. The first dose 
contains the vectored HAdV-26 vaccine. The booster dose, 
given after 21 days, is composed of the HAdV-5 vectored 
vaccine. It can be stored at a standard freezer temperature of 
-20 °C. The vaccine is safe and well tolerated, and there were 
no unexpectedly severe adverse effects. Cellular immunity, 
neutralizing antibodies, and RBD-specific IgG were detected 
in all participants being vaccinated. The phase 3 trial results 
showed that the vaccine had an efficacy of 91.4% on Day 28 
after the first dose and efficiency above 95% on Day 42 after 
the first dose [86].

Johnson and Johnson Vaccine (J&J V; JNJ-
78436735)

The Janssen Pharmaceutical Companies of Johnson & 
Johnson created JNJ. Their candidate is a replicating-defective 
adenovirus-26-based vector expressing the stabilized pre-
fusion S protein of SARS-CoV-2. Their main difference from 
the CanSino vaccine candidate is the adenovirus serotype. 
As opposed to the ubiquitous Ad5 serotype, very few people 
have been exposed to the rare Ad26 serotype; therefore, 
pre-existing immunity against the vector reducing this 
candidate’s immunogenicity is not expected to be a major 
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concern. The second advantage of this candidate is that the 
dosing schedule involves a single immunization [54]. In the 
phase I/II clinical trial, the vaccine JNJ-7843-6735 induced 
robust humoral and cellular immune responses in middle-
aged adults and the elderly [87].

JNJ-78436735 was given to participants at either 0.5 or 
1 1011 viral particles per vaccination. The reactogenicity 
of the vaccine was mild, mainly causing injection site pain, 
fever, headache, and myalgia. It can produce a neutralizing 
antibody response in 90% of vaccinated people after four 
weeks and in all recipients after two months. The JJV shows 
an efficacy of 66% globally and 72% in the United States. It 
is also capable of protecting against the SARS-CoV-2 variant 
of the B.I.351 lineage observed in South Africa. It can be 
stored for up to 3 months at refrigerator temperatures (2–
8℃) and for 2 years at -20 ℃. It showed 66% effectiveness 
in preventing infection after a single dose and was capable 
of preventing 85% of severe COVID-19 cases 28 days after 
vaccination [54].

AD5-nCoV (Convidecia) Vaccine

The AD5-nCoV vaccine is prepared by the Chinese Can 
Sino Biologics Company in cooperation with the Academy of 
Military Medical Sciences. The Convidecia vaccine is based 
on using human adenovirus serotype 5 in cooperation with 
the Academy of Military Medical Sciences. The Convidecia 
vaccine is based on using human adenovirus serotype 5 
(Ad5) vectors to deliver the information that codes for SARS-
CoV-2 full-length S protein into host cells [54]. It is currently 
in phase 3 clinical trials, and the Chinese government has 
already approved it for military use for a period of one year. 
The efficacy of the vaccine after a one-shot dosage is 65.7%. It 
has the advantage of being suitable for storage at refrigerator 
temperatures (2–8 °C). No serious adverse reactions after 
vaccination have been reported [88].

Recombinant Protein Subunit Vaccines

These types of vaccines utilize no genetic materials 
but use whole or fragments of viral proteins packed in 
nanoparticles [89,90]. This type of vaccine is considered 
very safe and incapable of causing disease. Five vaccines 
of this type are in preclinical trials utilizing different 
protein (peptide) subunits [91]. Since these subunits are 
poorly immunogenic, they require adjuvants and repeated 
administrations [90]. They can primarily induce reasonable 
CD4+ T-cell activation and specific neutralizing antibody 
responses, but they show poorer stimulation of CD8+ T 
cells. Three types of recombinant protein subunit vaccines 
are described in the subsections below; they are in the late 
stages of phase 3 clinical trials or have received authorization 
in some countries [92].

Novavax (NVX-Cov2373) Vaccine

The NVX vaccine is manufactured by a Maryland-based 
company, Novavax, in collaboration with GSK and Sanofi, two 
companies in the United Kingdom and France, respectively. 
It is a recombinant protein nanoparticle vaccine composed 
of trimeric spike glycoproteins and a potent Matrix-M1 
adjuvant. Attaching viral proteins to a nanoparticle carrier 
is used to aid efficient delivery and uptake by body cells 
[9]. The vaccine is administered in two doses, three weeks 
apart, by intramuscular injection. It can produce a strong 
antibody response as well as T-cell activation [93]. It is stable 
at refrigerator temperatures and has an efficacy of 89.3%, 
reaching up to 96% in a U.K. clinical trial [92].

ZF 2001 (RBD Dimer) Vaccine

The latest subunit vaccine candidate to enter Phase 
3 clinical studies is the adjuvanted RBD-dimeric antigen 
designed by Anhui Zhifei Longcom Biopharmaceutical and 
the Chinese Academy of Medical Sciences. Phase 3 clinical 
study was launched on December 20, 2020 (http://en.nhc.
gov.cn/2020-11/20/c_82209.htm). The ZF 2001 vaccine is 
administered in a three-dose course, with the doses given 4 
weeks apart by intramuscular injection. The efficacy of this 
vaccine is officially unknown, as it is in a phase 3 clinical trial, 
but it has been approved for emergency use in Uzbekistan 
and China [94].

Epivac Corona Vaccine (EVCV)

The EVCV vaccine is manufactured by the Vector 
Institute, a Russian biological research center. It is based 
on using fragments of synthetic viral peptides reflecting 
SARSCoV-2 antigens. It is given in two doses, three weeks 
apart, by intramuscular injection to people over 18 years 
of age as well as older people >60 years of age [69]. The 
developers claimed that it is stable during storage at 
refrigerator temperatures for up to two years. Its efficacy is 
officially unknown, and it is awaiting regulatory approval. 
However, all the volunteers who were administered the 
EVCV developed specific antibodies against its antigens [69].

DNA Vaccine

Nucleic acid vaccines are genetic vaccines consisting 
only of DNA or RNA, which are taken up and translated into 
proteins by host cells and elicit immune responses. Because 
they contain no viral coat, naked nucleic acids are generally 
not subject to pre-existing immunity that can hamper the 
clinical efficacy of recombinant virus vaccines. In terms 
of higher safety and lower cost of production, nucleic acid 
vaccines have some major advantages over other types. 
Post-translational modifications under natural conditions 
are reproduced by the plasmid-encoded protein, retaining 
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immunogenicity [95] and humoral and cellular immune-
stimulating capabilities simultaneously [96]. Although there 
have been concerns about the safety of DNA vaccines in 
these early stages of development [97], it appears that viral 
gene integration into host genes through plasmid vectors is 
extremely rare [98].

DNA vaccines are routinely constructed from plasmid 
DNA molecules that encode one or more antigens. Once 
delivered, the plasmid DNA vaccine is internalized by host 
cells at the immunization site or by migrating antigen-
presenting cells (APCs), where, in order to induce an adaptive 
immune response, the DNA must enter the cell nucleus [99]. 
Finally, the target gene is expressed and translated into 
protein [100]. DNA vaccines are, to some extent, more stable 
than mRNA-based vaccines. Plasmid DNA technology allows 
for the simple production of large quantities of vaccines 
with the possibility of conferring long-term immunity. 
An advantage of this kind of vaccine is the stimulation of 
both humoral and cellular immunity [101]. However, the 
disadvantages looming over DNA vaccines are due to their 
limitations in processing protein immunogen and the risk of 
vector chromosomal integration and mutations in the host 
genome [102].

ZyCoV-D Vaccine

ZyCoV-D has been developed by Zydus Cadila Health Care 
Limited in India. It is the world’s first plasmid DNA vaccine 
for COVID-19 ever approved for mankind [103]. This vaccine 
encodes the spike protein-induced neutralizing antibody 
responses and T-helper-1 pro-inflammatory interferon-
gamma responses in mice, guinea pigs, and rabbits [104]. 
The pVAX-1 vector is used in conjunction with a specific 
order encoding the S-protein from the Wuhan strain of 
SARS-CoV-2. Phase 3 clinical trials show promising results 
against the delta variant of SARS-CoV-2. During the trial, the 
vaccine was found to be safe and effective. The preliminary 
analysis of symptomatic RT-PCR positive cases revealed that 
ZyCoV-D had a primary efficacy of approximately 66.6%. The 
third dose of the vaccine proved to be 100% effective against 
moderate disease [103].

INO-4800 Vaccine

One of the DNA vaccine candidates developed by the US-
based Inovio Pharmaceuticals company It can be delivered 
to cells intradermally. Administration of this vaccine requires 
the use of an electroporation device called CELLECTRA 
to make the human cells more permeable and thus enable 
proper entry and incorporation of the DNA molecule into 
the cell. This candidate consists of plasmid DNA that, 
upon administration, prompts human cells to produce the 
antigenic SARS-CoV-2 spike protein. While DNA vaccines 

carry certain advantages, including optimal development 
speeds and thermostability, past trials have shown that 
producing sufficient immunogenicity can be a challenge 
[105]. Additionally, administration can often require larger 
volumes of DNA vaccine compared to more traditional 
vaccine types, and it requires the use of an electroporation 
device, which can be inconvenient [105].

BacTRL-Spike Vaccine or Live Bifidobacterium 
Vaccine

It is developed by Symvivo Corporation in Canada. This 
vaccine is constituted by Bifidobacterium longum, engineered 
to deliver synthetic DNA encoding the spike protein from 
SARS-CoV-2 contained in a plasmid vector. A phase 1 
clinical trial is currently underway to assess the safety and 
immunogenicity profiles of the bacTRL-spike vaccine against 
SARS-CoV-2 (NCT04334980). The vaccine is administered 
orally, and the gut colonization by B. longum should provide 
continuous delivery and expression of SARS-CoV-2S protein-
encoding plasmids. A mucosal, systemic humoral, and 
cell-mediated immune response is foreseen as a result of 
the translation of this plasmid within the gastrointestinal 
lymphoid tissues [106].

Gx-19 Vaccine

The GX-19 vaccine has been developed by biotech firm 
Genexine Inc. of South Korea. The vaccine is a synthetic, 
soluble, DNA-based candidate. The ectodomain of the S gene 
has been codon optimized for increased antigen expression 
in mammalian cells and subcloned into the plasmid pGX27 
vector. Preliminary studies have shown that electroporation-
enhanced GX-19 induces robust antibody and T cell 
responses. Furthermore, vaccination of GX-19 was shown to 
confer effective protection against SARS-CoV-2 challenge at 
10 weeks following the last vaccination in immunized non-
human primates, supporting further expectations for GX-19 
as a vaccine candidate against SARS-CoV-2 in ongoing human 
clinical trials [107].

Virus-Like Particle Vaccine

Virus-like particles (VLPs) are self-assembled viral 
structural proteins that mimic the conformation of native 
viruses but lack the viral genome. The VLP displays multiple 
copies of the target antigen on its surface and has a size 
that enhances recognition and subsequent uptake from 
antigen-presenting cells, therefore promoting its efficient 
phagocytosis, processing, and presentation by dendritic cells 
and inducing strong and broad humoral and cellular immune 
responses [54]. VLPs are unable to replicate or reverse-
mutate, suggesting better safety, especially for viruses that 
cause high morbidity and mortality. Up until now, VLP 
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vaccines have been commercialized for protection against 
human papillomavirus and hepatitis B virus [108].

VLPs are generally produced by encoding the viral 
structural proteins and expressing them in heterologous 
systems, such as recombinant vaccinia virus, mammalian 
cells (293T and CHO), baculovirus, yeast expression 
systems, and plant expression vectors [109]. In practice, 
VLP-based vaccines are similar to whole inactivated virus 
vaccines, but the antigenic proteins may be better preserved 
and exposed to the immune system since no inactivation 
step is performed. Therefore, it is less likely to affect the 
immunogenicity of viral proteins due to the destruction of 
surface epitopes. Moreover, since no live virus is used in any 
steps of the production, VLPs are conveniently accomplished 
in low-containment manufacturing settings [110].

None of the VLP vaccines have yet been approved for 
use, but there are three promising VLP vaccines under 
development. Firstly, the Canadian company Medicago has 
genetically engineered plants. It uses the virus-transfected 
plant Nicotiana benthamiana to express the prefusion 
trimeric subunit form of the SARS-CoV-2 S-protein and 
assemble it on the surface of VLPs, which are harvested and 
used for immunization [54]. VLP vaccine is in phase 2/3 
clinical trials and was recently granted Fast Track designation 
by the U.S. FDA [69]. Secondly, the ContiVir team at the Max 
Planck Institute for Dynamics of Complex Technical Systems 
(Magdeburg, Germany) has designed and produced a virus-
like particle vaccine. Thirdly, a Georgia-based biotechnology 
company, GeoVax Atlanta, has used MVA (modified vaccinia 
virus ankara viral vectors) to express VLPs [111-131].

Conclusion and Recommendations

Since the discovery of the human coronavirus, new 
types of coronavirus have kept emerging and have gradually 
become a serious threat to global public health. Despite their 
having been almost two decades since the first coronavirus 
outbreak. Hence the emergence of the SARS-CoV-2 infection 
caused a health crisis, psychological fear, economic loss, and 
socio-political turbulence across the world. Thereafter, a 
historically large number of scientists, clinicians, researchers, 
and all government officials around the world were mobilized 
to work together to develop vaccines to mitigate this global 
disaster. In an unprecedented timeline, the global scientific 
community has investigated the virus’s origin, genome, and 
pathogenesis and has developed many different vaccines 
with virus immunogenicity. Owing to the urgent need for the 
vaccine, some vaccines get approval before they have been 
fully developed for emergent use with minor side effects. In 
addition, the virus can mutate and become the bottleneck for 
the development of vaccines and their sustainability. Lastly, 
with the dedication of global scientific communities and all 

other stakeholders, sooner or later a safer, more efficient 
and multivalent vaccine will be developed. Based on the 
above conclusions, the following recommendations were 
forwarded:
•	 Despite the need to develop a vaccine quickly, assurance 

of its safety and efficacy is critical and should be 
prioritized.

•	 Although there are several candidate vaccines licensed 
for urgent use, still safer and more efficacious vaccines 
with no minor side effects should be developed.

•	 Vaccines that can be stored and shipped at optimal 
temperatures should be developed for use in developing 
countries.

•	 The virus genome needed to be regularly sequenced and 
analyzed to advance vaccine development and maintain 
vaccine sustainability.

•	 The current vaccine’s S protein should be replaced with 
the renovated molecules with the required changes in the 
specific amino acid to effectively combat the upcoming 
SARS-CoV-2 infection.

•	 All responsible parties should be committed to 
developing invaluable pan-coronavirus vaccines that 
provide broad protection against multiple pathogenic 
viruses.
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