Advances in Robotic Technology (ART)

ISSN: 2997-6197

Review Article

Transparency in AI Decision Making: A Survey of Explainable AI Methods and Applications

Authors: Jain R*

DOI: 10.23880/art-16000110

Abstract

Artificial Intelligence (AI) systems have become pervasive in numerous facets of modern life, wielding considerable influence in critical decision-making realms such as healthcare, finance, criminal justice, and beyond. Yet, the inherent opacity of many AI models presents significant hurdles concerning trust, accountability, and fairness. To address these challenges, Explainable AI (XAI) has emerged as a pivotal area of research, striving to augment the transparency and interpretability of AI systems. This survey paper serves as a comprehensive exploration of the state-of-the-art in XAI methods and their practical applications. We delve into a spectrum of techniques, spanning from model-agnostic approaches to interpretable machine learning models, meticulously scrutinizing their respective strengths, limitations, and real-world implications. The landscape of XAI is rich and varied, with diverse methodologies tailored to address different facets of interpretability. Model-agnostic approaches offer versatility by providing insights into model behavior across various AI architectures. In contrast, interpretable machine learning models prioritize transparency by design, offering inherent understandability at the expense of some predictive performance. Layer-wise Relevance Propagation (LRP) and attention mechanisms delve into the inner workings of neural networks, shedding light on feature importance and decision processes. Additionally, counterfactual explanations open avenues for exploring what-if scenarios, elucidating the causal relationships between input features and model outcomes. In tandem with methodological exploration, this survey scrutinizes the deployment and impact of XAI across multifarious domains. Successful case studies showcase the practical utility of transparent AI in healthcare diagnostics, financial risk assessment, criminal justice systems, and more. By elucidating these use cases, we illuminate the transformative potential of XAI in enhancing decision-making processes while fostering accountability and fairness. Nevertheless, the journey towards fully transparent AI systems is fraught with challenges and opportunities. As we traverse the current landscape of XAI, we identify pressing areas for further research and development. These include refining interpretability metrics, addressing the scalability of XAI techniques to complex models, and navigating the ethical dimensions of transparency in AI decision-making.Through this survey, we endeavor to cultivate a deeper understanding of transparency in AI decision-making, empowering stakeholders to navigate the intricate interplay between accuracy, interpretability, and ethical considerations. By fostering interdisciplinary dialogue and inspiring collaborative innovation, we aspire to catalyze future advancements in Explainable AI, ultimately paving the way towards more accountable and trustworthy AI systems.

Keywords: Explainable AI; Interpretability; AI Decision Making; Machine Learning; Trust; Accountability; Fairness

View PDF

F1 europub scilit.net International Committee of Medical Journal Editors (ICMJE) Logo

Chat with us on WhatsApp

Welcome to Medwin Publishers. How can we help you today?