ISSN: 2578-4846
Authors: Lajili M*
This study aims at simulating turbulent premixed flame in a constant-pressure vessel (P = 1 atm) where the turbulence is supposed to be homogeneous and isotropic. The mixture of gas is composed by iso-octane-air. The realized CFD were based on Lagrange approach in Monte Carlo simulations. We focused on calculations of; flame radii RF, the flame propagation velocity St, flame-brush thickness ï¤t and flammability limit. During the study, influencing crucial parameters such as, the equivalence ratio ï¦ and the turbulence intensity u’ were considered. Results show that the equivalence ratio enhances the flame propagation when passing from lean to stoichiometric flames. Also, the turbulence intensity yields a notable growth for the flame characteristics mentioned above. Moreover, we noticed that the flammability limit is strongly depending of the turbulence intensity and the equivalence ratio. More precisely, we remarked that the minimum ignition energy (MIE) was situated quite smaller than the stoichiometric condition. But, it increased with the turbulence intensity.
Keywords: Monte Carlo Simulation; Premixed Flame; Turbulent