Nanomedicine & Nanotechnology Open Access (NNOA)

ISSN: 2574-187X

Research Article

Study of Ion Transport Behavior of Nanocomposite Polymer Electrolyte for Battery Application

Authors:

Kumhar RP*

DOI: 10.23880/nnoa-16000123

Abstract

In the present work an attempt has been made to synthesize and characterize polyvinyl alcohol: polyvinyl carbazole (90:10) blend based nanocomposite polymer electrolyte dispersed with SiO2 namely, (PVA: PVK): CH3COONH4: EC: SiO2 system. Improvement in amorphous nature of the system upon addition of SiO2 nanofillers has been confirmed by XRD and SEM studies. The ionic conductivity of nanocomposite electrolyte improves moderately (~5 times) at room temperature with optimum of 5× 10-3 S/cm for 6 wt% SiO2. The temperature dependent conductivity analysis shows that ion conduction is controlled by combination of Arrhennius and VTF behavior. All the results have been suitably explained. All-solid-state battery has been fabricated in the cell configuration Zn+ZnSO4 (anode)/polymer Gel Electrolyte/V2O5+C+Polymer Gel Electrolyte (cathode) to establish its practical utility in electrochemical devices. Cell performance studies on cell with 0.4 M electrolyte show open circuit voltage of 1.5 volt with power density 1.12 W/Kg been studied by recording the cell potential discharge profiles at room temperature under different load conditions.

Keywords:

Polyvinyl Alcohol; Polyvinyl Carbazole; Nanocomposite Polymer Electrolytes; Polymethyl Methacrylate

View PDF

Google_Scholar_logo Academic Research index asi ISI_logo logo_wcmasthead_en scilitLogo_white F1 search-result-logo-horizontal-TEST cas_color europub infobase logo_world_of_journals_no_margin