Petroleum & Petrochemical Engineering Journal (PPEJ)

ISSN: 2578-4846

Research Article

Universal “Plug and Play” Real-Time Entire Automotive Exhaust Effluents, Industry Vents and Flue Gas Emissions Liquefiers: The Game Changer Approach-Phase Two Category

Authors: Ekejiuba AIB*

DOI: 10.23880/ppej-16000349

Abstract

The first in the series of Azuberths Game Changer publications “Synergy of the Conventional Crude Oil and the FT-GTL Processes for Sustainable Synfuels Production: The Game Changer Approach-Phase One Category” a.k.a. (DOI: 10.23880/ppej- 16000330) is targeted at reducing 80 per cent CO2 emissions from the internal combustion engines by upgrading from the conventional crude oil refinery products to the synthetic fuels products (ultra-low-carbon fuels). This paper will focus on the complete elimination of the remaining 20 per cent CO2 emissions (i.e. to achieve zero- CO2 emissions) in transportation and power generating internal combustion engines as well as in the other centralized emissions/emitters such as petroleum industry flare lines, industrial process and big technology industries scrubber flue gas, et cetera. This invention stems from similar biblical quote {Isaiah 6:8-New International Version (NIV)} which states, and then I heard the voice of the Lord saying, “Whom shall I send? And who will go for us?” And I (Isaiah) said, “Here am I. Send me!” Laterally, in this case I (Azunna) said, “Here am I. Please use me”. Hence the aftermath, IJN-Universal Emissions Liquefiers is a plug and play units for all categories of pollutants discharge into the atmosphere. The work is motivated by the scientific facts that (i) The release of CO2 from automotive exhaust effluents, industry vents and flue gas emissions into the atmosphere contributes to greenhouse gas (GHG) accumulation causing global warming hence climate changes issues such as flooding of coastlines/sea-rising, melting of the glaciers, disrupted weather patterns, bushburning/ wildfire, depletion of Ozone layer, smog and air pollution, acidification of water bodies, runaway greenhouse effect, etc. (ii) Every gas stream (e.g., flue gas) can be made liquid by e.g. a series of compression, cooling and expansion steps and once in liquid form, the components of the gas can be separated in a distillation column. (iii) Captured liquefied gases can be put to various uses, especially carbon dioxide (CO2), which can be used for the production of renewable energy via Synfuels such as the e-fuel/solar fuel. The natural atmosphere is composed of 78% nitrogen, 21% oxygen, 0.9% argon, and only about 0.1% natural greenhouse gases, which include carbon dioxide, organic chemicals called chlorofluorocarbons (CFCs), methane, nitrous oxide, ozone, and many others. Although a small amount, these greenhouse gases make a big difference - they are the gases that allow the greenhouse effect to exist by trapping in some heat that would otherwise escape to space. Carbon dioxide, although not the most potent of the greenhouse gases, is the most important because of the huge volumes emitted into the air by combustion of fossil fuels (e.g., gasoline, diesel, fuel oil, coal, natural gas). In general, the major contributors to the greenhouse effect are: Burning of fossil fuels in automobiles, deforestation, farming, processing and manufacturing factories, industrial waste and landfills, increasing animal and human respiration, etc. The increased number of factories, automobiles, and population increases the amount of these gases in the atmosphere. The greenhouse gases never let the radiations to escape from the earth atmosphere and increase the surface temperature of the earth. This then leads to global warming. The petroleum industry well sites vent/flare gases (methane, ethane, propane, butanes, H2O (g), O2, N2, etc.). Internal combustion engines (automobiles-cars, vehicles, ships, trains, planes, etc.) release exhaust effluents (containing H2O (g), CO2 , O2, and N2); steam generators in large power plants and the process furnaces in large refineries, petrochemical and chemical plants, and incinerators burn considerable amounts of fossil fuels and therefore emit large amounts of flue gas to the ambient atmosphere. In general, Flue gas is the gas exiting to the atmosphere via a “flue”, which is a pipe or channel for conveying exhaust gases from a fireplace, oven, furnace, boiler or steam generator. The emitted flue gas contains carbon dioxide CO2 , carbon monoxide CO, sulphur oxide SO2, nitrous oxide NO and particulates. Furthermore, GTL plants produce CO2, H2O and waste heat, while both pyrolysis and gasification plant generate gaseous products consisting of (a mixture of non-condensable gases such as H2, CO2, and CO and light hydrocarbons “e.g. CH4” at room temperature, as well as H2O (g), O2 and complex hydrocarbons e.g. C2H2, C2H4, etc.). In general, all combustion is as a result of air-fuel mixture burning (i.e. air or oxygen mixing directly with biomass/ coal or with liquid/gaseous hydrocarbon inside internal combustion engines), releases carbon dioxide and steam (H2O) back into the atmosphere as well as producing energy for work. Specifically, during combustion, carbon combines with oxygen to produce carbon dioxide (CO2). The principal emission from transportation and power generating internal combustion engines is carbon dioxide (CO2). The level of CO2 emission is linked to the amount of fuel consumed and the type of fuel used as well as the individual engine’s operating characteristics. For instance, diesel-powered engines have higher emission than petrol/gasoline-powered engines. Although emphasis is places more on CO2, this investigation is ultimately concerned with the real-time liquefaction of all the components of gaseous release/emissions -related to air pollution/health problem. It is believed that the mortality rate from air pollution is eight times larger than the mortality caused by car accidents each year. Pollutants with the strongest evidence for public health concern include particulate matter (PM), ozone (O3), nitrogen dioxide (NO2) and sulphur dioxide (SO2). All the exhaust effluents gases/flue gas and vent/flare gases are captured by liquefying them and then put to various uses, to achieve “Net zero” emissions. Fundamentally, the objective of the present invention is to develop a compact device (Universal Emissions Liquefiers) that can be retro-fitted onto the exhaust tailpipe-end of the internal combustion engines (diesel-powered, gasoline-powered, and hybrid automobiles-cars, vehicles, SUV’s, trucks, motor cycles, tri-cycles, portable electric generators, sea and cargo ships/ boats, trains, planes, rockets, etc.) and outlet of industrial machines that release flue gases through exhaust/scrubber channels, as well as crude oil, refined products storage tanks that vent greenhouse gases into the atmosphere, coal processing units/ plants and turn them into liquid { CO2 (l), N2 (l), O2 (l), etc.} or powdered components or chemically transform them in realtime with selective catalysts to any other specific compound, e.g. treating CO2 with hydrogen gas (H2) can produce methanol (CH3OH), methane (CH4), or formic acid (HCOOH), while reaction of CO2 with alkali (e.g. NaOH) can give carbonates (NaHCO3) and bicarbonates (Na2CO3). Nitrogen (N2) to ammonia (NH3) or Hydrazine (N2H4), and molecular oxygen (O2) to hydrogen peroxide (H2O2), et cetera. Alternatively, in new automobiles designs, the universal emissions liquefiers’ device can be directly net-worked on the floor alongside the catalytic converters and may eliminate the need for muffler/silencer/resonator. This is achieved by the application of any of the five main gas capture/separation technologies: Liquid absorption, Solid adsorption, Membrane separation (with and without solvent- organic or inorganic), Cryogenic refrigeration/distillation, and Electrochemical pH-swing separation or their combination to selectively trap and liquefy the individual pollutants. According to the fact from CarBuster, almost 0.009 metric tons of carbon dioxide is produced from every gallon of gasoline burned, which means that the average car user makes about 11.7 tons of carbon dioxide each year from their cars alone.

Keywords: Universal Emissions Liquefiers; Automotive Exhaust Effluents; Greenhouse Gas (GHG) Accumulations; Pollutants Discharge into the Atmosphere; Liquid Absorption; Solid Adsorption; Membrane Separation; Cryogenic Refrigeration; Electrochemical pH-Swing Separation

View PDF

F1 europub